"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
Ce livre s'articule autour des trois principaux thèmes auxquels l'auteur a consacré ses recherches au cours de ces 15 dernières années, thèmes qui sont assez étroitement reliés entre-eux. Il s'agit du produit harmonique, du procédé de sommation de Ramanujan et de la fonction zêta d'Arakawa-Kaneko. Le produit harmonique possède de remarquables propriétés vis-à-vis des sommes harmoniques ; il permet notamment de généraliser les nombres harmoniques de Rota et de donner une extension naturelle d'une formule de Dilcher. La combinaison du produit harmonique et de la sommation de Ramanujan permet d'introduire d'une manière algébrique une intéressante famille de fonctions analytiques Fk de la variable complexe s. Ses remarquables propriétés font de la fonction zêta d'Arakawa-Kaneko généralisée ?k(s, x) (ainsi que de sa variante alternée ?? k(s, x)) un puissant outil pour l'étude des sommes d'Euler et des sommes binomiales inverses. Ces travaux se situent au confluent de la combinatoire, de l'algèbre et de la théorie des nombres.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile
Au Rwanda, l'itinéraire d'une femme entre rêve d'idéal et souvenirs destructeurs
Participez et tentez votre chance pour gagner des livres !