Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Un schema aux volumes finis pour les systemes non homogènes : Analyse et application d'un schema aux volumes finis dedie aux systemes non homogènes

Couverture du livre « Un schema aux volumes finis pour les systemes non homogènes : Analyse et application d'un schema aux volumes finis dedie aux systemes non homogènes » de Slah Sahmim aux éditions Editions Universitaires Europeennes
Résumé:

Ce livre est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma mène à une nouvelle formulation où intervient le signe de la matrice... Voir plus

Ce livre est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma mène à une nouvelle formulation où intervient le signe de la matrice Jacobienne du système de lois de bilan considéré. Pour le système de Saint Venant avec terme de pente, on montre formellement que le schéma SRNHS vérfie la C-propriété exacte introduite pour les schémas équilibres par Bermùdez et Vázquez. Les résultats numériques 1D et 2D, en particulier du cas de rupture de barage sur un fond en forme de marche, montrent le degré d'efficacité du schéma. Pour le système diphasique des zones de non hyperbolicité peuvent exister, avec apparition de valeurs propres complexes dans la Jacobienne du système. On montre que pour les configurations faiblement non hyperboliques, on peut calculer le signe de la Jacobienne par l'algorithme de Newton-Schultz. Pour les configurations plus raides, où la méthode précédente ne fonctionne plus, on a recours à la méthode de perturbation par densité.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.