Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Depuis l'article fondateur de Kontsevich, on sait qu'il existe une L formalité pour chaque variété M qui donne une quantification par déformation pour toute structure de Poisson sur M. Dans le cas de R^d, Kontsevich construit une L formalité explicite à l'aide des graphes dits graphes de Kontsevich. Cette thèse développe le calcul de la cohomologie de Chevalley sur ces graphes et précisément des graphes vectoriels et linéaires, à savoir que cette cohomologie est donnée par des graphes à roues de longueur impaire, on retrouve les cocycles fondamentaux de Fuchs et de DeWilde-Lecomte. La cohomologie de Chevalley-Harrison des algèbres de Gerstenhaber est relevant de la structure de G formalité introduite par Tamarkin. On montre que, bien que cette cohomologie est triviale pour l'algèbre T_poly(R^d), le cocycle fondamental de Fuchs survit pour la cohomologie de Chevalley-Harrison à valeurs dans R de l'algèbre de Gerstenhaber T_poly^hom(R^d) formée par des k-tenseurs à coefficients polynomiaux homogènes de degré k. Enfin, on étudie la structure des (a, b)-algèbres qui généralise celle des algèbres de Gerstenhaber et de Poisson graduées et on donne l'algèbre à homotopie près associée.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"