Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Monodromie spectrale d'operateurs non auto-adjoints

Couverture du livre « Monodromie spectrale d'operateurs non auto-adjoints » de Phan-Q aux éditions Presses Academiques Francophones
Résumé:

Nous proposons de construire un invariant combinatoire, appelée la "monodromie spectrale" à partir du spectre d'un seul opérateur h-pseudo-différentiel (non auto-adjoint) à deux degrés de liberté dans la limite semi-classique. Notre inspiration est issue de la monodromie quantique qui est... Voir plus

Nous proposons de construire un invariant combinatoire, appelée la "monodromie spectrale" à partir du spectre d'un seul opérateur h-pseudo-différentiel (non auto-adjoint) à deux degrés de liberté dans la limite semi-classique. Notre inspiration est issue de la monodromie quantique qui est définie pour le spectre conjoint d'un système intégrable de n opérateurs h-pseudo-différentiels auto-adjoints qui commutent, donnée par S. Vu Ngoc. Le premier cas simple traité dans ce travail est celui d'un opérateur normal. Dans ce cas, son spectre discret peut être identifié au spectre conjoint d'un système quantique intégrable. Le deuxième cas plus complexe que nous proposons est une petite perturbation d'un opérateur auto-adjoint en supposant une propriété d'intégrabilité classique. Nous montrons que son spectre discret (dans une petite bande autour de l'axe réel) possède également une monodromie combinatoire. La difficulté ici est qu'on ne connaît pas la description du spectre partout, mais seulement dans un ensemble de type Cantor. De plus, nous montrons aussi que cette monodromie peut être identifiée à la monodromie classique (qui est définie par J. Duistermaat.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.