Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

High-order discontinuous galerkin methods for the maxwell equations

Couverture du livre « High-order discontinuous galerkin methods for the maxwell equations » de Fahs-H aux éditions Editions Universitaires Europeennes
Résumé:

This work is concerned with the development of a high-order discontinuous Galerkin time-domain (DGTD) method for solving Maxwell's equations on non-conforming simplicial meshes. First, we present a DGTD method based on high-order nodal basis functions for the approximation of the electromagnetic... Voir plus

This work is concerned with the development of a high-order discontinuous Galerkin time-domain (DGTD) method for solving Maxwell's equations on non-conforming simplicial meshes. First, we present a DGTD method based on high-order nodal basis functions for the approximation of the electromagnetic field within a simplex, a centered scheme for the calculation of the numerical flux at an interface between neighbouring elements, and a second-order leap-frog time integration scheme. Next, to reduce the computational costs of the method, we propose a hp-like DGTD method which combines local h-refinement and p-enrichment. Then, we report on a detailed numerical evaluation of the DGTD methods using several propagation problems. Finally, in order to improve the accuracy and rate of convergence of the DGTD methods previously studied, we study a family of high-order explicit leap-frog time schemes. These time schemes ensure the stability under some CFL-like condition. We also establish rigorously the convergence of the semi-discrete approximation to Maxwell's equations and we provide bounds on the global divergence error.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.