Des incontournables et des révélations viendront s'ajouter à cette liste au fil des semaines !
Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique.
Il est consacré à un problème issu de la mécanique classique, la " conjecture d'Arnold ", qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système. La première partie expose la " théorie de Morse ", outil indispensable de la topologie différentielle contemporaine.
Elle introduit le " complexe de Morse " et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l'" homologie de Floer ", qui en est un analogue en dimension infinie. Les objets de l'étude sont alors plus compliqués et nécessitent l'introduction de méthodes d'analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie.
Enfin, l'ouvrage contient en appendice la présentation d'un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés - géométrie différentielle, topologie algébrique et analyse - auxquels le lecteur pourra se référer si besoin. L'ouvrage est issu d'un cours de M2 donné à l'université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Des incontournables et des révélations viendront s'ajouter à cette liste au fil des semaines !
A gagner : des exemplaires de cette BD jeunesse sur fond de légendes celtiques !
L'autrice coréenne nous raconte l'histoire de son pays à travers l’opposition et l’attirance de deux jeunes adolescents que tout oppose
Mêlant la folie à l’amour, l’auteur nous offre le portrait saisissant d’une « femme étrange » bousculant les normes binaires de l’identité sexuelle