Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Modele bio-inspire pour le clustering de graphes

Couverture du livre « Modele bio-inspire pour le clustering de graphes » de Masmoudi Nesrine aux éditions Editions Universitaires Europeennes
Résumé:

Dans ce travail, nous présentons une méthode originale s'inspirant des comportements des fourmis réelles pour la résolution de problème de classification non supervisée non hiérarchique. Cette approche crée dynamiquement des groupes de données. Elle est basée sur le concept des fourmis... Voir plus

Dans ce travail, nous présentons une méthode originale s'inspirant des comportements des fourmis réelles pour la résolution de problème de classification non supervisée non hiérarchique. Cette approche crée dynamiquement des groupes de données. Elle est basée sur le concept des fourmis artificielles qui se déplacent en même temps de manière complexe avec les règles de localisation simples. Chaque fourmi représente une donnée dans l'algorithme. Les mouvements des fourmis visent à créer des groupes homogènes de données qui évoluent ensemble dans une structure de graphe. Nous proposons également une méthode de construction incrémentale de graphes de voisinage par des fourmis artificielles. Nous proposons deux méthodes qui se dérivent parmi les algorithmes biomimétiques. Ces méthodes sont hybrides dans le sens où la recherche du nombre de classes, de départ, est effectuée par l'algorithme de classification K-Means, qui est utilisé pour initialiser la première partition et la structure de graphe.

Donner votre avis