Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
La première partie est consacrée à l'étude d'un certain type d'équations aux dérivées partielles non linéaires sur une variété Riemanienne compacte sans bord. En utilisant les bornes inférieures sur la courbure de Ricci et le diamètre, on minore la plus petite valeur propre du laplacien conforme ainsi que l'invariant de Yamabe de cette variété. On en déduit certaines conditions pour que (M,g) soit conformément di éomorphe à la sphère unité de même dimension. La seconde partie est consacrée à l'étude du problème de la prèscription de la courbure scalaire a n d'établir des résultats d'existence et de multiplicité pour le problème de Kazdan-Warner sur les sphères S2n+1 de Cn+1. On se limite à l'étude du cas n = 1.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"