Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Un feuilletage de dimension p (ou de codimension q = m-p) est la donnée d'une relation d'équivalence ouverte R sur une variété différentiable M de dimension m vérifiant les deux propriétés qui suivent: (i) pour tout x M, ils existent un overt U de M et un un homéomorphisme de U vers son image envoyant toute classe d'équivalence de la relation restriction R/U de R à U est la trace d'un plan horizontal p×{y}, y q (on peut supposer que (U)= p× q), où désigne l'ensemble des nombres réels et k= ×...× , k-fois (k=p ou q). Le couple (U, ) est appelé une carte de M. (ii) Si (U, ) et (V, ) sont deux cartes distinguées pour avec U V est non vide, alors: ( o -1)(x, y) =( (x, y), (y)) p× q pour tout (x, y) ( p× q) (U V). Ce livre est une introduction aux notions topologiques générales des feuilletages, la structure transverse des feuilletages de codimension q=1, le groupe fondamental, les ensembles minimaux et d'autres propriétés topologiques. Dans cet ouvrage, on insiste plus particulièrement sur des exemples de feuilletages mettant en évidence la différence fondamentale entre la codimension q 2 et la codimension q=1.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"