Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Cet ouvrage présente une nouvelle modélisation de la corrélation d'alertes basée sur les classifieurs Bayésiens naïfs. Cette modélisation apprend les coordinations entre les actions élémentaires d'un scénario d'attaque sur la base d'une légère contribution des connaissances d'experts, tire profit des données disponibles sur les alertes et fournit des algorithmes efficaces pour la détection et la prédiction des objectifs d'intrusion. L'ouvrage montre aussi comment l'approche proposée peut être améliorée en prenant en compte les informations contextuelles codées en logiques de description, notamment dans le contexte de la détection coopérative d'intrusions. Plusieurs mesures d'évaluation sont également proposées dans cet ouvrage pour un multi-classifieurs Bayésiens naïfs. Ces mesures sont très importantes pour l'évaluation d'une approche de corrélation d'alertes utilisant un ensemble de classifieurs Bayésiens naïfs pour surveiller plusieurs objectifs d'intrusion.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Dans ce recueil de 13 nouvelles, la jeune autrice mexicaine frappe fort mais juste
Une fiction historique glaçante et inoubliable, aux confins de l’Antarctique
Découvrez les derniers trésors littéraires de l'année !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"