Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Introduction aux variétés différentielles

Couverture du livre « Introduction aux variétés différentielles » de Jacques Lafontaine aux éditions Edp Sciences
Résumé:

L'ouvrage est une initiation aux variétés différentielles, préalable à des enseignements plus spécialisés. Le lecteur devra posséder une compétence sur le calcul différentiel dans les espaces euclidiens. Sont abordées les principales notions de géométrie différentielle : variétés... Voir plus

L'ouvrage est une initiation aux variétés différentielles, préalable à des enseignements plus spécialisés. Le lecteur devra posséder une compétence sur le calcul différentiel dans les espaces euclidiens. Sont abordées les principales notions de géométrie différentielle : variétés différentielles, espaces tangent et cotangent, champs de vecteurs, formes différentielles. De nombreux exemples sont traités en détail. Cet ensemble constitue une introduction aux groupes de Lie. II est illustré par les éléments de théorie du degré et de cohomologie. Introduction aux variétés différentielles a pour objectif d'être un ouvrage de base. II propose des exercices classiques pour l'étudiant et le débutant en la matière, d'autres plus délicats pour l'enseignant, le chercheur ou l'étudiant de niveau plus avancé. Les solutions d'un bon nombre d'entre eux sont données en fin de volume. Le succès de la première édition, notamment auprès des étudiants, a motivé les améliorations de cette édition. Un chapitre nouveau est proposé sur les caractéristiques d'Euler-Poincaré et le théorème de Gauss-Bonnet. Cet ouvrage est un pap-ebook : un site web corrélé propose des compléments et des annexes. Le lecteur peut ainsi s'appuyer sur des rappels, des exercices, des approfondissements sur le site compagnon présenté au début du livre. Destiné aux étudiants de master et des préparations à l'agrégation, aux universitaires, aux professeurs des lycées et des classes préparatoires. Les physiciens sont également concernés.

Donner votre avis