Il n'est pas trop tard pour les découvrir... ou les offrir !
La géométrie algébrique réelle est l'étude des ensembles de solutions d'un système d'équations polynomiales à coefficients réelles. Dans cette vaste thématique, on se concentre sur les intersections de quadriques où déjà le cas de trois quadriques reste largement ouvert. Notre sujet peut être résumé comme l'étude topologique des variétés algébriques réelles et l'interaction entre leur topologie d'une part et leur déformations et dégénérations d'autre part, un problème issu du 16ième problème de Hilbert et enrichi par des développements récents. Au cours de ce travail, nous allons étudier les intersections maximales de quadriques réelles et démonter l'existence de telles intersections en utilisant des développements issus des recherches effectuées depuis la fin des années 80. Dans le cas d'intersections de trois quadriques, nous allons mettre en évidence le lien très étroits entre ces intersections et les courbes planes, et démontrer que l'étude des M-courbes peut se faire à travers l'étude des intersections maximales. À travers les résultats sur les courbes planes nodales, nous déterminerons dans certains cas les classes de déformations d'intersections de trois quadriques réelles.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Il n'est pas trop tard pour les découvrir... ou les offrir !
Inspirée d’une histoire vraie, cette BD apporte des conseils et des solutions pour sortir de l'isolement
L’écrivain franco-vénézuélien Miguel Bonnefoy poursuit l’exploration fantasmagorique de sa mémoire familiale...
Des romans policiers à offrir ? Faites le plein de bonnes idées !