Blanche vient de perdre son mari, Pierre, son autre elle-même. Un jour, elle rencontre Jules, un vieil homme amoureux des fleurs...
Soient G H des groupes de Lie, g h leurs algèbres de Lie, et pr : g* h* la projection canonique. Pour les orbites coadjointes O^G g* et O^H h*, on note n(O^G, O^H) le nombre de H-orbites dans l'intersection O^G pr 1(O^H), connue par la fonction de multiplicité de Corwin-Greenleaf. Dans l'esprit de la méthode des orbites due à Kirillov et Kostant, on s'attend à ce que n(O^G;O^H) coïncide avec la multiplicité de apparaissant dans la restriction à H d'une représentation unitaire irréductible de , où est attaché à O^G et est attaché à O^H. Des résultats dans cette direction ont été établis pour les groupes de Lie nilpotents et certains groupes de Lie résolules. Cependant, très peu de tentatives ont été faites jusqu'à présent pour les groupes de Lie à nilradical co-compact. Notre but dans cette thèse est la description de cette fonction pour certains groupes de Lie à radical nilpotent co-compact, en particulier les produits semi-directs des groupes compacts K avec des groupes de Lie nilpotents N.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Blanche vient de perdre son mari, Pierre, son autre elle-même. Un jour, elle rencontre Jules, un vieil homme amoureux des fleurs...
Des idées de lecture pour ce début d'année !
Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
A gagner : la BD jeunesse adaptée du classique de Mary Shelley !