Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Une propriete de contraction pour les systemes de lois de conservation

Couverture du livre « Une propriete de contraction pour les systemes de lois de conservation » de Ayad Setti aux éditions Editions Universitaires Europeennes
Résumé:

Le problème considéré dans cet ouvrage est celui de Cauchy pour les systèmes de lois de conservation hyperboliques. L'apparente simplicité de ce problème contraste avec la difficulté des problèmes liés à sa résolution, tant du point de vue théorique que de celui de l'analyse numérique. Ce... Voir plus

Le problème considéré dans cet ouvrage est celui de Cauchy pour les systèmes de lois de conservation hyperboliques. L'apparente simplicité de ce problème contraste avec la difficulté des problèmes liés à sa résolution, tant du point de vue théorique que de celui de l'analyse numérique. Ce travail est consacré à la propriété de dépendance continue des solutions faibles entropiques de ce problème par rapport aux données initiales dans le cas général des systèmes vectoriels. Cette propriété est essentielle à la détermination de l'unicité des solutions de tels problèmes. Nous construisons une métrique équivalente à la métrique L1, pour laquelle nous établissons une propriété de contraction dans le cadre du schéma wave front tracking pour des systèmes en une dimension d'espace. Nous donnons aussi plusieurs cas d'application de cette méthode: le problème de Riemann scalaire, le système en une dimension d'espace avec solution régulière, l'équation scalaire avec solution faible entropique et le système 2×2.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.