"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
Ce cours d'analyse est consacré à l'exposition d'un certain nombre de thèmes classiques en théorie des équations aux dérivées partielles et il s'adresse à des étudiants de master, des élèves en écoles d'ingénieurs ou à tous ceux qui désirent connaître cette partie importante des mathématiques. Ce travail part du théorème d'Existence et d'Unicité pour les solutions d'équations différentielles non-linéaires, aborde la résolution des équations scalaires linéaires du 1er ordre (la méthode employée est celle des courbes caractéristiques) et s'intéresse ensuite aux équations scalaires quasi-linéaires. La transformation de Fourier, présentée au chapitre 6, est très importante car elle permet de résoudre les équations à coefficients constants de la formeP(u) = F où P est un opérateur différentiel en (t, x). Les équations des ondes, de la chaleur et de Schrodinger sont toutes de ce type et font l'objet d'une résolution très détaillée au moyen de formules explicites. À la fin, on quitte le domaine des équations à coefficients constants pour celui des équations à coefficients variables. Les méthodes employées pour résoudre ces équations donnent lieu à des développements très importants et font largement partie du domaine de la recherche.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile
Au Rwanda, l'itinéraire d'une femme entre rêve d'idéal et souvenirs destructeurs
Participez et tentez votre chance pour gagner des livres !