Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Intégration, de Riemann à Kurzweil et Henstock ; la construction progressive des théories « modernes » de l'intégrale

Couverture du livre « Intégration, de Riemann à Kurzweil et Henstock ; la construction progressive des théories « modernes » de l'intégrale » de Laurent Moonens aux éditions Ellipses
  • Date de parution :
  • Editeur : Ellipses
  • EAN : 9782340020009
  • Série : (-)
  • Support : Papier
Résumé:

Au cours de leur parcours universitaire, les étudiants et futurs enseignants en mathématiques sont confrontés à plusieurs théories de l'intégrale : au premier plan, on trouve la théorie de Riemann (souvent décriée, parfois pour de mauvaises raisons) et la théorie de Lebesgue (souvent considérée... Voir plus

Au cours de leur parcours universitaire, les étudiants et futurs enseignants en mathématiques sont confrontés à plusieurs théories de l'intégrale : au premier plan, on trouve la théorie de Riemann (souvent décriée, parfois pour de mauvaises raisons) et la théorie de Lebesgue (souvent considérée comme « optimale »).
Le présent ouvrage se propose de présenter, dans une perspective « chronologique », trois théories de l'intégrale des fonctions d'une variable : l'intégrale de Riemann (et sa définition par Cauchy pour les fonctions continues), l'intégrale de Lebesgue et l'intégrale, récente mais efficace, de Kurzweil et Henstock.
Offrant au passage l'occasion d'étudier plusieurs problèmes délicats d'analyse réelle (parmi lesquels la question de la « mesure » des parties de la droite réelle, des ensembles mesurables et non-mesurables, la dérivabilité presque partout des fonctions croissantes, la validité dans chacune de ces théories du « théorème fondamental de l'analyse »), il s'efforce de comparer ces théories eu égard à leurs avantages respectifs, et de commenter largement leur apparition et leur développement dans l'histoire de l'analyse - rappelant au passage que les mathématiques constituent une « oeuvre humaine en constante évolution », pour reprendre les mots de J. Mawhin.
Destiné avant tout aux étudiants (Master) et futurs enseignants en mathématiques ayant déjà une connaissance préalable des fonctions réelles, ce livre comporte aussi de nombreux exercices résolus permettant au lecteur de se forger une compréhension aussi profonde que possible des concepts qu'il aborde.

Donner votre avis