Des idées de lecture pour ce début d'année !
Cet ouvrage est consacré aux espaces vectoriels normés ou semi-normés, dont les espaces de Banach, Fréchet et Hilbert, avec des développements nouveaux sur les espaces de Neumann - c'est-à-dire dans lesquels toute suite de Cauchy converge - et sur les espaces extractables - c'est-à-dire dans lesquels toute suite bornée a une sous-suite faiblement convergente. Il présente les principales propriétés de ces espaces utiles pour la construction des espaces de distributions, de Lebesgue et de Sobolev, à valeurs réelles ou vectorielles, ainsi que pour la résolution d'équations aux dérivées partielles. Dans ce but, le calcul différentiel est étendu aux espaces semi-normés. Espaces de Banach, Fréchet, Hilbert et Neumann privilégie les méthodes simples, les semi-normes, les propriétés séquentielles et bien d'autres encore, afin de rendre ces outils accessibles au plus grand nombre - doctorants, étudiants de troisième cycle, ingénieurs - sans en restreindre la généralité.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Des idées de lecture pour ce début d'année !
Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
A gagner : la BD jeunesse adaptée du classique de Mary Shelley !
Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."