Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
L'objet de ce travail est l'étude de certaines propriétés arithmétiques et combinatoires de la fonction somme des chiffres. Nous commençons par étudier des sommes d'exponentielles en vue de montrer un résultat d'équirépartition modulo 1 et un théorème probabiliste d'Erdös-Kac. Ensuite, on va généraliser un problème dû à Gelfond concernant l'étude de la répartition dans les progressions arithmétiques de la fonction somme des chiffres au cas des nombres ellipséphiques. En particulier, on donne un théorème analogue à celui d'Erdös, Mauduit et Sarközy sur l'uniforme répartition des entiers ellipséphiques dans les progressions arithmétiques sous une contrainte sur la somme des chiffres. Enfin, une étude de l'ordre moyen de certaines fonctions arithmétiques soumises à des contraintes digitales est faite en conséquence des travaux de Mkaouar et Wannès.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
Chacune des deux demeures dont il sera question est représentée dans le sablier et le lecteur sait d'entrée de jeu qu'il faudra retourner le livre pour découvrir la vérité. Pour comprendre l'enquête menée en 1939, on a besoin de se référer aux indices présents dans la première histoire... un véritable puzzle, d'un incroyable tour de force
Sanche, chanteur du groupe Planète Bolingo, a pris la plume pour raconter son expérience en tant qu’humanitaire...
Des incontournables et des révélations viendront s'ajouter à cette liste au fil des semaines !