Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
L'objet de ce travail est la théorie des corps réels ou théorie d'Artin-Shreier. Un corps K est réel si, et seulement si, -1 n'est pas somme de carrés dans K. K est réel si, et seulement si, il est ordonnable i.e. muni d'un ordre totale compatible avec la structure du corps. Dans un corps ordonnable, l'ordre est déterminé par l'ensemble des éléments positifs pour cet ordre. D'où on peut donner une présentation ensembliste de l'ordre. Un corps est ordonné si, et seulement si, il contient un cône propre. Sur chaque corps ordonné il y a une topologie définie à l'aide de la valeur absolue. Tout polynôme à coefficients dans ce corps est uniformément continu. Cependant il se peut que la propriété des valeurs intermédiaires ne soit pas vérifiée. Pour lever cette insuffisance, on définit la notion du corps réel clos. Le corps des nombres réels est réel clos. Moins évident, le corps des séries de Puiseux à coefficients réels est réel clos. Pour le montrer on utilise le théorème de Préparation de Weierstrass, et on montre que le corps des séries de Puiseux à coefficients complexes est algébriquement clos.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
Chacune des deux demeures dont il sera question est représentée dans le sablier et le lecteur sait d'entrée de jeu qu'il faudra retourner le livre pour découvrir la vérité. Pour comprendre l'enquête menée en 1939, on a besoin de se référer aux indices présents dans la première histoire... un véritable puzzle, d'un incroyable tour de force
Sanche, chanteur du groupe Planète Bolingo, a pris la plume pour raconter son expérience en tant qu’humanitaire...
Des incontournables et des révélations viendront s'ajouter à cette liste au fil des semaines !