Inspirée d’une histoire vraie, cette BD apporte des conseils et des solutions pour sortir de l'isolement
Les géométries modèles de Thurston de dimension trois sont classifies par W. M. Thurston. R. O. Filipkiewicz a classifié les géométries de Thurston de dimension quatre. C. T. C. Wall a étudié les structures complexes sur les géométries de Thurston de dimension quatre. S. Maier a étudié la platitude conforme conformal flatness des géométries de Thurston. Une variété Riemannienne M, de dimension n ? 3, est dite pseudo symétrique, au sens de Deszcz, s'il existe une fonction LR tel que R(X,Y).R=LR(X?Y).R. M. Belkhelfa, R. Deszcz et L. Verstraelen ont montré que chaque géométrie de Thurston de dimension trois est pseudo symétrique. On a montré que les géométries modèles de Thurston de dimension quatre, non symétriques, ne sont pas pseudo symétriques et que la seule géométrie modèle de dimension quatre Kählérienne et non symétrique, à savoir F4, est holomorphiquement pseudo symétrique.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Inspirée d’une histoire vraie, cette BD apporte des conseils et des solutions pour sortir de l'isolement
L’écrivain franco-vénézuélien Miguel Bonnefoy poursuit l’exploration fantasmagorique de sa mémoire familiale...
Des romans policiers à offrir ? Faites le plein de bonnes idées !
Nostalgique, nomade ou plutôt romantique ? Trouvez le livre de la rentrée qui vous correspond !