Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Les géométries de Thurston et la pseudo symétrie d'après R. Deszcz

Couverture du livre « Les géométries de Thurston et la pseudo symétrie d'après R. Deszcz » de Aabdelbasset Hasni aux éditions Editions Universitaires Europeennes
Résumé:

Les géométries modèles de Thurston de dimension trois sont classifies par W. M. Thurston. R. O. Filipkiewicz a classifié les géométries de Thurston de dimension quatre. C. T. C. Wall a étudié les structures complexes sur les géométries de Thurston de dimension quatre. S. Maier a étudié la... Voir plus

Les géométries modèles de Thurston de dimension trois sont classifies par W. M. Thurston. R. O. Filipkiewicz a classifié les géométries de Thurston de dimension quatre. C. T. C. Wall a étudié les structures complexes sur les géométries de Thurston de dimension quatre. S. Maier a étudié la platitude conforme conformal flatness des géométries de Thurston. Une variété Riemannienne M, de dimension n ? 3, est dite pseudo symétrique, au sens de Deszcz, s'il existe une fonction LR tel que R(X,Y).R=LR(X?Y).R. M. Belkhelfa, R. Deszcz et L. Verstraelen ont montré que chaque géométrie de Thurston de dimension trois est pseudo symétrique. On a montré que les géométries modèles de Thurston de dimension quatre, non symétriques, ne sont pas pseudo symétriques et que la seule géométrie modèle de dimension quatre Kählérienne et non symétrique, à savoir F4, est holomorphiquement pseudo symétrique.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.