Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Éléments de géométrie ; niveau M1 ; cours et exercices corrigés

Couverture du livre « Éléments de géométrie ; niveau M1 ; cours et exercices corrigés » de Henaut/Yger aux éditions Ellipses
  • Date de parution :
  • Editeur : Ellipses
  • EAN : 9782729819965
  • Série : (-)
  • Support : Papier
Résumé:

La collection Mathématiques à l'Université se propose de mettre à la disposition des étudiants de troisième, quatrième et cinquième années d'études supérieures en mathématiques des ouvrages couvrant l'essentiel des programmes actuels des universités françaises.
Certains de ces ouvrages pourront... Voir plus

La collection Mathématiques à l'Université se propose de mettre à la disposition des étudiants de troisième, quatrième et cinquième années d'études supérieures en mathématiques des ouvrages couvrant l'essentiel des programmes actuels des universités françaises.
Certains de ces ouvrages pourront être utiles aussi aux étudiants qui préparent le CAPES ou l'agrégation, ainsi qu'aux élèves des grandes écoles. Nous avons voulu rendre ces livres accessibles à tous : les sujets traités sont présentés de manière simple et progressive, tout en respectant scrupuleusement la rigueur mathématique. Chaque volume comporte un exposé du cours avec des démonstrations détaillées de tous les résultats essentiels et de nombreux exercices.
Les auteurs de ces ouvrages ont tous une grande expérience de l'enseignement des mathématiques au niveau supérieur. Cet ouvrage présente, sous une forme unifiée, les géométries différentielle, analytique et algébrique, et montre comment les méthodes de chacune de ces géométries permettent d'approfondir la compréhension des deux autres. Les trois premiers chapitres donnent les rappels nécessaires de calcul différentiel et intégral, et introduisent les concepts de base de la géométrie différentielle.
Le quatrième chapitre revient sur les notions classiques de la théorie des courbes et des surfaces de l'espace euclidien. Le lecteur verra comment les concepts généraux introduits dans les premiers chapitres s'appliquent à cette situation concrète. Le dernier chapitre enfin initie le lecteur à la théorie des surfaces de Riemann et la géométrie algébrique, en particulier à la géométrie des courbes algébriques planes.
Le texte est éclairé de brèves notes situant dans le temps les contributions des principaux acteurs du développement de la géométrie. En bref, voici un ouvrage d'une richesse exceptionnelle, que tout étudiant ou enseignant en mathématiques aimera lire et relire.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.